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Abstract. We study the impact of user association policies on flow-level performance in interference limited
wireless networks. Most research in this area has used static interference models (neighboring base stations are
always active) and resorted to intuitive objectives such as load balancing. In this paper, we show that this can
be counterproductive in the presence of dynamic interference which couples the transmission rates to users at
various base stations. We propose a methodology to optimize the performance of a class of coupled systems, and
apply it to study the user association problem. We show that by properly inducing load asymmetries, substantial
performance gains can be achieved relative to a load balancing policy (e.g., 15 times reduction in mean delay).
Systematic simulations establish that our optimized static policy substantially outperforms various dynamic
policies and that these results are robust to changes in file size distributions, channel parameters, and spatial
load distributions.
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1 Introduction

The high demand for wireless capacity and the increasing volume of traffic mandates the efficient use of available
radio resources. Wireless capacity can be substantially enhanced by reusing the entire frequency spectrum at every
transmitter instead of sacrificing individual peak and overall system capacity by partitioning it. This increased
system capacity and spectral efficiency is achieved at the expense of increased interference. Even in the case of
WLANs with frequency reuse, high densities of users in large scale networks could lead to high interference due
to the limited number of orthogonal frequencies available under the present standards.

The bursty nature of traffic in typical wireless systems results in dynamic interference which couples perfor-
mance in the system in a complex manner. For such coupled systems, stability is fairly difficult to establish, and
performance is particularly hard to optimize. The capacity of such a system as well as the actual performance that
users perceive can be very different from that predicted by a saturated model that assumes that transmitters are
always on, see for example [1–3]. Without having access to good performance models, many researchers have
resorted to intuitive objectives such as load balancing across system resources. In this paper, we show that such
load balancing, be it greedily done by users or across the system, may be counter productive when there is dynamic
coupling due to interference.

Let us consider some examples where dynamic coupling impacts network functions. Consider the user associ-
ation problem exhibited in Fig. 1a. Assume that the base stations share the same spectrum, so they interfere with
each other when they are concurrently active, which in turn reduces their transmission capacity to users. For sim-
plicity, assume user requests to download files arrive uniformly between base stations 1 and 2. A basic problem
in such networks is to decide which base station should serve a new user request. If both the network and traffic
demands are symmetric, one might intuitively expect that a static policy that associates arrivals with the closest
base station, i.e., the one that delivers the strongest signal, and thus balances the offered load, would be ‘optimal’.
Surprisingly, we will see that this is not the case.

A second example is exhibited in Fig. 1b where wireless nodes relay traffic. Assume nodes contend at random
for a shared channel. Depending on the amount of traffic and interference they see, one might optimize nodes’ con-
tention probability for the channel so as to minimize overall packet delays. Clearly, performance here is a complex
function of the dynamic traffic loads, contention probabilities, and interference seen by nodes. The third example,
also shown in the same figure, concerns routing traffic across paths that are link/node disjoint. Unfortunately, trans-
missions along the paths may directly (or even indirectly) interfere with each other. Should a packet flow with rate
λ be split across the two paths, or is it better to route traffic on a single path?
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Fig. 1. Examples of network functions impacted by dynamic coupling

The above exemplify the relevance of dynamic coupling in optimizing network functions at various layers. In
the above cases, assuming symmetry in loads and/or the network, one might imagine load balancing might be a
good objective, but this need not be the case. For example, it may be preferable to route traffic on a single path so
as to avoid interference across paths. In this paper, we focus on the terminal association problem which, as we will
see, is already fairly complex. As mentioned earlier, when the channels and traffic load are symmetric, one might
expect that associating users’ requests with the closest base station might be a good strategy. This corresponds to
splitting the load evenly between the two base stations. Fig. 1c shows the simulated delay performance (explained
in more detail in the sequel) when load split between the base stations is varied from 0.5 (even division of load) to
0.1 (highly asymmetric load division). The results show that the optimal load division depends on the intensity of
the offered load, and is not balanced but significantly asymmetric. As exhibited in the figure, where mean delays are
plotted on a logarithmic scale, the performance implications can be substantial; load balancing may achieve mean
delays 15 times higher versus an optimal asymmetric split. This result is surprising, and reveals the complexity and
substantial impact that dynamic coupling can have in the context of wireless networks. This motivates the need for
careful analysis that we will carry out in this paper, as well as comparisons with more complex user and system
greedy dynamic policies.

Related Work: Various dynamic policies that split load among base stations have been proposed for different
contexts. For example, load balancing schemes have been proposed for the scenario where frequency reuse is used
to protect against inter-cell interference, and where the traffic carried by the network is voice [4–6]. The objective
in these works has been to ensure that load is balanced among base stations.

This philosophy has also been used in addressing the case of best effort traffic. When the wireless network
is subject to spatially heterogeneous traffic loads, emphasis has been placed on the development of schemes that
try to balance the load across base stations. Centralized schemes to jointly balance loads and schedule packets are
presented in [7]. Such centralized schemes however, incur excessive communication and computational overhead.
In [8], a load balancing scheme that requires much less coordination is considered. The scheme tries to explicitly
balance the load across base stations, taking into consideration both the long term rate at which users can be served,
and their load. Another idea that was proposed, also in [8], is to lower the strength of the pilot signals that heavily
loaded base stations broadcast, so as to discourage users from joining them. A scheme that is similar in spirit
is proposed in [9], called MAC-cell breathing, that attempts to balance the load in all base stations. The above
mentioned schemes however, assume implicitly that the base stations in the network are always transmitting and
thus interfering with transmissions in their neighboring cells. The focus in these schemes is to ensure that the load
being served by different base stations in a neighborhood is as similar as possible.

The case of dynamic traffic, with the associated bursty interference, has not been extensively studied. In [10],
the effect of equalizing the load in neighboring base stations was studied through simulation, and it was observed
that load balancing did not make much of a difference under heavy load. This problem is also studied in [11], but
under the assumption that transmissions are orthogonal. The impact of dynamic interference was also demonstrated
in [12], wherein the problem of load balancing in a hybrid wireless local area/wide area network was studied using
approximations proposed in [13].

The stability region of a dynamic system with interacting servers under load balancing strategies was examined
in [14]. The stability region was explicitly characterized in the case of a two server system, and a lower bound
on the stability region was obtained for systems with multiple servers. The stability region in the case of static
load balancing policies and a class of dynamic policies was also studied in [15]. A surprising result is that the



stability region of the system is not always maximized by perfect load balancing across servers. While the above
papers address the question of determining the network capacity, they do not provide insight into designing user
association policies to optimize performance perceived by users in a system serving a load that is in the interior
of the stability region. In contrast, the focus of this paper is on flow level performance, i.e., the actual file transfer
delays experienced by users. We obtain bounds on the mean delay experienced by users in coupled systems and
use these bounds to design user association policies that optimize flow level performance.

Our contributions: We study a static load allocation scheme that takes into account the long term spatial load
being served by the base stations and attempts to minimize the average file transfer delay perceived by users. In
addition to short-term, unpredictable variations in the load caused by individual user arrivals and departures, there
are predictable long-term variations in the aggregate traffic load depending on the day-of-week, hour-of-day, etc.
[16, 11]. The proposed scheme is adapted to these long-term traffic patterns, and does not depend on the instan-
taneous loads or short-term variations. Such a scheme is potentially simpler than dynamic schemes which require
knowledge of the instantaneous loads being served, but might be sensitive to errors in the long term traffic esti-
mates. Our contributions in this context include:
1. We propose a methodology to optimize the performance of wireless systems coupled through dynamic interfer-
ence and apply it to study networks with base stations distributed on a line and on a two dimensional plane. To our
knowledge, prior to this work, no closed-form or good approximations were available for general systems with 3
or more coupled queues.
2. For a dynamic model of the user association problem in one dimension, we show that delay optimal static poli-
cies are threshold based. Surprisingly, we find that even for a symmetric network, a policy which balances load can
be highly suboptimal. Moreover, we find that asymmetric policies can improve average delays seen by users at all
spatial locations.
3. We show that an optimized static policy (asymmetric) can substantially outperform dynamic policies which are
greedy from the user’s or system’s points of view and achieves performance close to that of a ‘repacking’ policy.
This suggests that an important objective for protocol and network design will be to achieve such asymmetries.
4. We demonstrate through extensive simulations that the proposed policy consistently outperforms conventional,
load balancing based approaches under both spatially homogeneous and heterogeneous loads. These results also
show that the performance of conventional dynamic schemes is highly dependent on the spatial load, and no single
best scheme can be identified.

Organization of paper: The system model is described in detail in Sec. 2. The optimal static association policy
is characterized in Sec. 3, while Sec. 4 explores the impact of asymmetric static association policies. The method-
ology used to pick the optimal static policy is presented in Sec. 5. Simulation results comparing the performance
of the static policy to various dynamic strategies is presented in Sec. 6, and the effect of non-homogeneous spatial
loads is explored in Sec. 6.4. The sensitivity of delay performance to file size distributions and system and channel
parameters is considered in Sec. 6.5, and Sec. 7 concludes the paper.

2 System Model

In Secs. 3-4, we consider two base stations, BS1 and BS2, located a distance d apart on a line, as shown in Fig. 1a.
User requests are distributed on the line segment joining the two base stations. We identify a user request by the
distance between the user and BS1, denoted by x ∈ [0,d]. The distance between the user and BS2 is then given
by d− x. User requests arrive according to a spatial Poisson process with mean measure λ(·) which is absolutely
continuous with respect to the Lebesgue measure, i.e., the rate at which user requests arrive into a set X is λ(X ).
We assume that each user request corresponds to a downlink file transfer which is assumed to be exponentially
distributed with mean 1, and the position of the user remains fixed for the duration of the transfer. Once the file
transfer is completed, the user leaves the system.

The capacity to users from their serving base station depends on the received signal strength and the strength
of the received interference, and is assumed to be monotonically increasing in the perceived signal to interference
plus noise ratio (SINR). The base stations transmit, and thereby cause interference only when they are serving
users. We assume that the base stations use the processor sharing mechanism to serve active users, i.e., the base
station splits time evenly among all users currently being served. Thus, a degree of temporal ‘fairness’ is imposed.

We classify user association policies into static and dynamic policies. Dynamic policies use information about
the current loads being served at the candidate base stations when deciding the base station to which a new user
is assigned. A static user association policy is one that does not take into account the current state of the system
when making this decision. A static load allocation policy π partitions the line segment into regions X π

1 and X π
2 ,



served by BS1 and BS2 respectively. The base station that serves a user at location x under policy π is denoted by
βπ(x). Thus, if x ∈ X π

1 then βπ(x) = 1, otherwise βπ(x) = 2. Base stations transmit at maximum power when there
are active associated users, and turn off otherwise. The signal strengths received by a user at location x from BS1
and BS2 are denoted by s1(x) and s2(x) respectively. For i = 1,2, we denote the worst and best received signals in
A⊂ [0,d] by si(A) = infx∈A si(x) and si(A) = supx∈A si(x). Let N0 denote the average power of the additive Gaussian
noise.

Under a given policy π, we let Uπ(t) = (Uπ
1 (t), Uπ

2 (t)) where Uπ
i (t) is the set of locations for users being

served at base stations i = 1,2 at time t. Note that since λ(·) is non-atomic, users’ locations will be distinct with
probability 1. Given our assumptions on arrivals and file sizes, Uπ(t) is a Markov process since, given all the users
locations, one can determine their service capacities and thus departure rates. Note however that its state space
is uncountable. By contrast, the process Qπ(t) = (Qπ

1(t),Q
π
2(t)) defined by Qπ

i (t) = |Uπ
i (t)| for i = 1,2 is on a

countable state space, but not Markovian.
This model is similar to that of optimally routing n classes of users to m non-identical queues studied in [17],

with an infinite number of classes. However, in our case the problem is further complicated by the fact that the
queues at the base stations are coupled (through interference) and the system is non-work conserving. Systems of
coupled queues have been analyzed in the past [18–21], but the problem is extremely difficult and only asymptotic
results and closed form expressions in the case of some simple work-conserving scenarios with two coupled queues
are known. Even the problem of characterizing the stability of coupled queues which was addressed in [22] is
difficult, and one has to employ numerical methods.

2.1 Simulation Model

In the bulk of the simulation results, we consider two base stations located 500m apart with users arriving ac-
cording to a Poisson process.The three base station network studied in Sec. 6.3 consists of three facing sectors in a
hexagonal layout of base stations with cell radius 250m, with users again arriving according to a Poisson process.In
Secs. 3-6, where we develop and study the semidefinite programming based methodology, we assume that the user
distribution is spatially homogeneous. In the two base station case, users are assumed to be distributed uniformly
on the line joining the two base stations, and in the three base station network, users are assumed to be distributed
uniformly within the hexagon formed by the three interfering sectors. We consider non-homogeneous spatial load
distributions in the simulation results presented in Sec. 6.4. and the exact load profiles simulated are described
therein.

A carrier frequency of 1GHz, and a bandwidth of 10MHz are assumed. The maximum transmit power is
restricted to 10W. Additive white Gaussian noise with power −55dBm is assumed. We consider a log distance
path loss model[23], with path loss exponent 2. Shadowing, and fading are not considered in these preliminary
results. File sizes are assumed to be exponentially distributed, with mean 5MB. The data rate at which users are
served is calculated based on the perceived SINR using Shannon’s capacity formula. The maximum rate at which
a user can be served is capped at 54 Mbps. The base stations transmit at maximum power when they have active
users, share capacity across users using a processor sharing mechanism, and turn off otherwise. The mean user
perceived delay is estimated within a relative error of 2%, at a confidence level of 95%. Note that the sensitivity of
the delay performance to the channel and system model is examined in Sec. 6.5 where a system with a higher path
loss exponent, and cell-edge SNR of 10 dB is simulated.

3 Optimal Static Policies

We begin by considering static association policies in the one dimensional, two base station system. Such policies
are defined by the service regions corresponding to each base station, which in turn may depend on the long
term offered load λ(·). The key result is that under our system model, the service regions are contiguous and
thus are defined by a single threshold between the two base stations. The following lemma provides a partial
characterization of optimal static policies. Note at the outset that, while this result appears straightforward, the
challenge lies in the dynamic nature of the model; specifically, in dealing with the spatial arrivals and departures,
the dynamic (on/off) nature of the interference from the neighboring base station, and thus the coupling of delay
performance between the two base stations.

Lemma 1. Consider the two base station model defined in Sec. 2. For any static load allocation policy πa with
R1 ⊆ X πa

1 , R2 ⊆ X πa
2 with λ(R1) = λ(R2), and such that s1(R2)≥ s1(R1) and s2(R2)≤ s2(R1), the policy πb with

X πb
1 = (X πa

1 ∪R2)\R1, X πb
2 = (X πa

2 ∪R1)\R2 achieves lower (or equal) average user delay.



The insight underlying this lemma can be grasped by considering Fig. 2. It illustrates a policy πa which satisfies
the lemma’s conditions if signal strength decays monotonically with distance from the serving base station –
although part of our system model, this is not required to prove the lemma. Policy πb is constructed by merely
exchanging service regions R1,R2 between the two base stations. The constraints on the best and worst case signal
strengths ensure that this exchange is favorable for both base stations at all the associated user locations, which
implies the following straightforward fact.

BS1 BS2

R2 R1

X     :=
π
1

a

π
2X     :=a

s (R )
_

1      1 s (R )
_

2      2

s (R )_1      2 s (R )2      1_
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Fig. 2. A sub-optimal load allocation policy.

Fact 1 Under the assumptions on R1 and R2 in Lemma 1, and the assumption that capacity is monotonically
increasing in SINR, the capacity from BS1 to any user in R2 is greater than that to any user in R1 under the same
interference regime, i.e., BS2 is transmitting or not. Similarly, the capacity from BS2 to any user in R1 is greater
than that to any user in R2, whether BS1 is transmitting or not.

So, the exchange leaves the intensity of arrivals to BS1 and BS2 unchanged, and associates users to them which
then can be served at higher capacity under the same interference regime. This allows us to construct a spatial
coupling (i.e., by associating users in different regions) for networks under the two policies, showing that the
average queue lengths are not increased. The details of this argument are in the appendix, and can be extended to
other service disciplines, e.g., FCFS and LCFS.

Theorem 1. For the two base station model defined in Sec. 2, there exists a static load allocation policy minimizing
mean delay corresponding to a spatial threshold x∗ ∈ [0,d] such that a user at location x is served by BS1 if x≤ x∗

and by BS2 otherwise. This can also be expressed as a threshold on the ratio of received signal strengths from the
two base stations.

Proof Sketch: Since traffic intensity measure λ(·) is non-atomic, if the service regions associated with the BS1
and BS2 are not contiguous, one can construct regions R1 and R2 satisfying Lemma 1. Thus, a new policy can
be constructed by exchanging regions R1 and R2 between the base stations’ service regions without increasing
the mean delay. This exchange operation can be repeated as long as the service areas are not contiguous. Thus an
optimal policy must be defined by contiguous regions, i.e., specified by a spatial threshold. Since the ratio of the
received signal strengths is strictly decreasing or increasing with the received signal strength (or distance) from a
base station, the policy also be implemented as a threshold on this ratio.

Note that optimal static load allocation policies need not necessarily be unique. For example, consider the case
when user requests are distributed homogeneously on the line segment joining the two base stations. If the optimal
threshold does not correspond to the midpoint, then by symmetry, the policies that divide the service areas using
thresholds at a distance d∗ from BS1 and d∗ from BS2 will result in identical mean user delays.

4 Optimal Threshold Trends

As a consequence of Theorem 1, we need only consider threshold-based static allocation policies. Fig. 1c exhibits
the simulated mean user delay for varying thresholding policies as the (spatially homogeneous) arrival rate be-
tween the base stations increases. The policies are characterized by the fraction of load served by BS1 with 0.5
corresponding to load balancing and 0.1 to only 10% of the load. As noted earlier, due to symmetry, the delay
performance would be identical if the threshold were moved closer to BS2. For each arrival rate, the optimal load
split, i.e., roughly achieving the minimum mean delay, is highlighted. We make the following observations:
1. The location of the optimal threshold is a function of the load on the system.
2. Except at very low loads, delay performance is improved by moving the threshold away from the mid-point,
thus inducing asymmetrical loads on the two base stations.

Why does this happen? Load balancing increases parallelism, i.e., base stations are more likely to be simulta-
neously active. In our model, load balancing associates users with close by base stations providing them a stronger
signal. Finally, it would appear that load balancing might be beneficial in terms of statistical multiplexing at the
two base stations. If capacity users see were fixed, these points would provide the right insight. Yet, when dynamic



interference is present, the capacity users see (particularly those far from either base station) can be substantially
reduced by interference, and the fraction of time that base stations interfere with each other depends on the traffic
and the load allocation policy. Thus, when arrival rate is low, the probability of the base stations being simulta-
neously active is low; the base stations operate in an interference-free environment, and load balancing is roughly
optimal. For higher arrival rates, performance is strongly impacted by interference, and skewing the load is bene-
ficial. Intuitively, this skew reduces the utilization of one of the base stations, say BS1, and thus the interference
it causes on BS2’s users, which reduces BS2’s utilization, in turn benefiting BS1. However, one cannot overdo
this skew as serving users that are far away, and thus have poor received signal, is also detrimental. Finally, it is
tempting to assume that as load increases, base stations are always busy and the role of dynamic coupling reduces.
Yet, as can be seen, at high loads performance sensitivity is also high, and the gains of an optimal asymmetric
split increase further. The optimal threshold reflects a complex tradeoff among dynamic interference, statistical
multiplexing, and users’ signal strengths.

5 Optimizing the Threshold

In this section, we propose an approximation methodology for optimizing static load allocation policies for the
wireless network model in Sec. 2, naturally extended to N base stations serving a possibly higher dimensional
region. A policy π partitions the service area such that base station n has service area X π

n and overall arrival rate
λn = λ(X π

n ). Several technical challenges will be addressed. First, we approximate the Markovian model with
uncountable state space by one with a countable state space, i.e., we will no longer keep track of the locations
of users associated with each base station. This involves introducing an ‘effective’ rate for all users associated
with a base station which depends on the busy state of the remaining base stations. Thus, the model preserves the
dynamic interference characteristics. Second, we propose an approach to upper/lower bound the performance for
the approximated model. Finally, we propose optimizing performance over families of static policies that can be
easily parametrized, e.g., for our one dimensional example, one need only determine the threshold. The subsequent
section shows the accuracy of the proposed methodology is excellent. We also note that the approach is applicable
to a broader set of problems with coupled queues or dynamic interference.

5.1 Countable State-Space Approximation

We let ~Q(t) = (Qn(t),n = 1, . . . ,N) denote the number of active users at each base station at time t for our ap-
proximated process. For notational simplicity, we have suppressed its dependency on π. As mentioned earlier, the
capacity to a user depends on both its current location and the interference profile it sees from neighboring base
stations. We let~∆(t) = (∆n(t),n = 1, . . . ,N) where ∆n(t) = 1(Qn(t) > 0) denotes the status (idle or busy) or the ‘in-
terference profile’ of the base stations. Note that~∆(t) can take 2N possible values which we denote~δi, i = 1, . . . ,2N .
Let cn(x,~δi) denote the actual capacity at which base station n can serve a user at location x∈X π

n under interference
profile~δi.

The incremental time users spend in the system is inversely proportional to their service capacity. Thus, the
mean rate at which users in a cell can be served depends on the steady state distribution of users that is induced in
the cell (which differs from the distribution of arrivals). As shown in [24], the effective service capacity of a base
station is given by the harmonic mean of the user capacities, when these are not time varying. In our approximate
model, the effective capacity under interference profile~δi depends only on~δi and is given by

c
~δi

n =

(∫
X π

n

1

cn(x,~δi)

λ(dx)
λn

)−1

,

the harmonic mean of the users service capacities under~δi weighted by the spatial distribution of arrivals to the
base station, i.e., λ(dx)

λn
. Since, in reality, each user does observe different rates over the course of time depending on

the activity level of the neighboring base station, these effective capacities are an approximation. However, users
with low received signal strength tend to be located near the cell edge, and are also typically subject to high levels
of inter-cell interference. Thus, in most cases, we expect this approximation to be reasonable. Since files have mean
size of 1, the total service rate µ~δ

i
n at base station n under interference profile~δi is given by µ~δ

i
n = c~δ

i
n . We assume

that the system is stable and let µ∗ denote an upper bound for the maximum service rate for any base station.
Our approximation is given by a continuous-time Markov chain with transition rate bounded by η = ∑

N
n=1 λn +

Nµ∗, so it can be uniformized. This will be of use in the sequel. With a slight abuse of notation, we let ~Q(k) denote



the state for the uniformized discrete time Markov chain and ~∆(k) the associated interference profile at discrete
time step k. The transition probabilities for the uniformized Markov chain are as follows. Suppose ~Q(k) =~q has
associated interference profile~δi, i.e., δi

n = 1(qn > 0) then

P(arrival to queue n|~Q(k) =~q) =
λn

η
,

P(departure from queue n|~Q(k) =~q) =
µ
~δi
n

η
δ

i
n,

P(no change|~Q(k) =~q) = 1− ∑
N
n=1 λn +µ

~δi
n δi

n

η
.

Note that, if it exists, the uniformized chain’s stationary distribution is identical to that of the original. Also, its
evolution can be represented as a stochastic recursion

~Q(k +1) = ~Q(k)+~X(k), k = 0,1, . . . ,

where ~X(k) = (Xn(k),n = 1,2, . . . ,N) denotes increments in the queues. An arrival into queue n at iteration k is
represented by Xn(k) = 1, a departure by Xn(k) =−1 and if the transition corresponds to the self-loop, ~X(k) =~0.
Note that ~X(k) and ~Q(k) are not independent, e.g., one can not have a departure from an empty queue. When the
system is stable [25, 26], there is a stationary distribution for (~Q,~X) such that

~Q d= g(~Q,~X) := ~Q+~X (1)

where d= denotes equality in distribution.

5.2 Performance Bounds

Below, we describe our approach to bounding the system’s mean sum-queue length. The approach extends the
work of [27] to coupled queuing systems and can also be used to bound other performance metrics, see [28] for
more details. Bounds on the mean queue lengths in turn translate to bounds on the mean delay via Little’s Law.

Let ψ denote a joint distribution for (~Q,~X) on S = S~Q×S~X ⊆ ZN
+×ZN

+ satisfying (1) and with marginals ψ~Q
and ψ~X . Eq. (1) can in this case be rewritten as

ψ~Q = ψg−1. (2)

We partition S~Q into 2N regions where the same set of queues are non-zero, i.e., S~δi := {~q : δi
n = 1(qn > 0),n =

1, . . . ,N} for i = 1, . . . ,2N . Let ψ
~δi

and ψ
~δi

~Q
, ψ

~δi

~X
be the conditional distributions for (~Q,~X) and its marginals given

~Q ∈ S~δi . Note that for all states in S~δi the queues share the same service rates, so follows ~Q is conditionally
independent of ~X given ~Q ∈ S~δi , i.e.,

ψ
~δi

= ψ
~δi

~Q
ψ

~δi

~X , i = 1, . . . ,2N . (3)

We shall use multi-index notation in formulating our bounds. For ~α ∈ ZN
+ and ~Y ∈ RN we let ~Y~α denote the

term Y α1
1 . . .Y αN

N , and let |~α|= ∑
N
n=1 αn. For r ∈ N we define

m
~β
~δi = E

ψ
~δi
~X

[
~X

~β
]
, |~β| ≤ 2r and i = 1, . . . ,2N . (4)

Given the transition probabilities on each region S~δi these can be easily computed. Bounds on mean sum-queue
length can be obtained by optimizing distributions ψ satisfying the following constraints:

Problem 1. Given S ,S~Q and S~X solve:

sup/ inf
ψ

Eψ~Q

[
N

∑
n=1

Qn

]
s.t. (2),(3),(4),

Eψ[1] = EψQ [1] = EψX [1] = 1, (5)
ψ ∈M(S),ψQ ∈M(SQ),ψX ∈M(SX ). (6)



Here, M(S), M(S~Q), and M(S~X ) are sets of positive Borel measures supported on S , SQ, and SX respectively, and
(5) ensures they are probability measures. The parameter r controls the degree of accuracy of such bounds [29]. As
r→∞ the distribution of ~X is specified exactly, in turn uniquely determining the distributions of ~Q and and (~Q,~X).

To allow numerical computation, we further relax Problem 1 based on joint moments of degree no higher than
2r. For all~α,~β such that |~α|+ |~β| ≤ 2r and k = 1, . . . ,2N we define decision variables:

x~α
~β

k := E[~Q~α~X
~β|~Q ∈ S~δk ] P(~Q ∈ S~δk).

Note that the mean sum queue length can now be expressed as ∑
N
n=1 ∑

2N

k=1 x~en,0
k , where~en is the unit vector with a 1

for queue n.
Eq. (2), or equivalently (1), implies equality for all moments on the left and right hand sides. Note that

g(~Q,~X)~α = (~Q+~X)~α = ∑
|~γ1|+|~γ2|≤α

g(~γ1,~γ2)
~α

~Q~γ1~X~γ2 ,

with Binomial coefficients {g(~γ1,~γ2)
~α

}. So, we can relax the distributional constraint (2) to a constraint on moments
of order no higher than 2r giving

2N

∑
k=1

x~α,0
k =

2N

∑
k=1

∑
|~γ1|+|~γ2|≤α

g(~γ1,~γ2)
~α

x~γ1~γ1
k , ∀|~α| ≤ 2r. (7)

We also relax constraint (3) by equating the moments of the product distribution to the products of the moments

x~α
~β

k = m
~β
δk

x~α,0
k , ∀|~α|+ |~β| ≤ 2r, k = 1, . . . ,2N , (8)

which also subsumes (4). Constraint (5) can be directly expressed as:

2N

∑
k=1

x0,0
k = 1. (9)

Finally we need to ensure constraints (6) are satisfied by the moments/decision variables. Let xk = {x~α
~β

k , |~α|+
|~β| ≤ 2r}, a moment sequence associated with the set S~δk for k = 1, . . . ,2N . We denote the cone of moments

supported on Sk = S~δk ×SX by M2r(Sk), and it’s closure by M2r(Sk). So (6) translates to a moment constraint xk ∈
M2r(Sk), ∀k = 1, . . . ,2N . Such constraints can in turn be expressed as certain matrices being positive semidefinite.
In general, a necessary condition for the sequence y = {y~α~β, |~α|+ |~β| ≤ 2r} to be a valid truncated sequence of
moments is that the associated moment matrix, denoted Mr(y), be positive semidefinite, i.e., Mr(y)� 0 – see [27,
29] for details. Such constraints must be satisfied by the truncated moment sequences, i.e.,

Mr(xk)� 0, k = 1, . . . ,2N . (10)

Additionally, note that S~δk can be specified by an intersection of linear inequalities and so can Sk, i.e.,

Sk = ∩h∈Hk{h(~q,~x)≥ 0},

where Hk denotes a set linear functions defining Sk. Clearly {xk} should also be a valid truncated moment sequence
when restricted to each half plane {h(~q,~x)≥ 0}. Again it can be shown that a necessary condition for this to be the
case is that an associated (localizing) moment matrix, denoted Mr−1(h,xk), depending on the coefficients of the
hyperplane h and xk be positive semidefinite, see [27, 29] for details. The corresponding set constraints is given by

Mr−1(h,xk)� 0, ∀h ∈ Hk,k = 1, . . . ,2N . (11)

Substituting our relaxed moment and semidefinite constraints into Problem 1 we obtain :

Problem 2. Given m
~β
~δi , |~β| ≤ 2r and i = 1, . . . ,2N , the moments of X , solve:

sup/ inf
{xk|k=1,...,2N}

2N

∑
k=1

N

∑
n=1

x~en,0
k

s.t. (7), (8), (9), (10), (11).

Solving this semidefinite optimization problem also yields tighter bounds as r is increased, i.e., more information
about X is used, yet at an increased complexity. We shall see that small r suffice in the sequel.



5.3 Determining Optimal Thresholds

As mentioned earlier, when policies can be easily parameterized, one can use these bounds to optimize perfor-
mance. For our two base-station scenario, Theorem 1 shows the optimal static load allocation policy is a simple
threshold. So for any threshold, Problem 2 can be solved to determine bounds on the mean delay, and a simple line
search can be used to determine the threshold giving the smallest lower bound on the mean delay. In the case of
the three base station network considered in the sequel, we parametrize policies based on weights associated with
the base stations, as described in Sec. 6.3.

Fig. 3a exhibits the computed approximate optimal thresholds versus those obtained via brute force simulation
for our two base station model. Semidefinite optimization problems associated with relaxations of order 2 were
solved using [30] and [31] to determine the necessary bounds. As can be seen both load splits (thresholds) and
resulting mean delay performance are very close, supporting the accuracy of our optimization methodology. The
optimization approach however provides the flexibility to address complex traffic loads as well as systems with a
larger number of base stations.
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Fig. 3. Performance of the optimized static user association policy.

6 Performance Comparison

6.1 Comparing Static Policies

Fig. 3b-i again illustrates the impact that the choice of threshold location has on delay performance. The user
distribution is spatially homogeneous, so locating the threshold at the midpoint between the base stations corre-
sponds to a static load balancing approach. As can be seen, the resultant mean user delays are greatly decreased by
choosing an optimal threshold, particularly at moderate to high system loads. Fig. 3b-ii further exhibits the spatial
distribution of user delays under the two schemes when the rate at which user requests arrive in the network is 1.2
per second. Surprisingly, skewing the load towards one base station does not result in a trade off where a subset of
the users, e.g., at the heavily loaded base station, experience poor performance. Instead, under the optimal policy,
the overall impact of inter-cell interference is reduced such that all users, irrespective of their spatial location or
perceived signal strength, see improved performance on average.

6.2 Optimized Policy vs. Dynamic Strategies

Next we compare the performance of the optimal static policy versus the following three dynamic policies:
Greedy User: each new user joins the base station which offers the highest current service rate. This requires
knowledge of the new user’s capacity to each base station when the neighbor is active/idle and the number of users
each is serving.
Greedy System: each new user is assigned to the base station so as to maximize the resulting current sum service
rate of the base stations. This policy is more complex than the Greedy User policy as in addition it requires
knowledge of the capacity for all ongoing users with and without interference.
Repacking: each time a user arrives or leaves, the assignments of all users are chosen so as to maximize sum
service rate of the base stations via a brute force search – the overheads and complexity of such a scheme would
be unrealistically high, yet we hypothesize that it results in the best delay performance among non-anticipative
dynamic schemes.

Fig. 4a illustrates the mean delay (logarithmic scale) for varying traffic loads under the above-mentioned greedy
policies. Surprisingly, the optimal static policy substantially outperforms the two greedy polices at moderate to high
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loads. Indeed, at high load, the mean delay of the static policy is 6 times lower than the greedy system policy which
itself is orders of magnitude lower than the greedy user policy. As expected, the repacking policy shown in Fig. 4b
(linear scale) is the best, but indeed very close to the optimal static policy.

Fig. 4c exhibits the spatial delay distribution under the system-level greedy scheme vs. the static policy. While
the greedy policy exhibits perhaps desirable spatially symmetric performance, it is still the case that the optimal
static policy gives better performance to all user locations.

6.3 Three Base Station Network

The three base station case can be used as a building block to develop a load allocation policy in a larger network.
The number of base stations that can potentially serve a particular user request is unlikely to be very large. A
load association policy that decides only between the three strongest base stations for each user request seems to
be a reasonable tradeoff between complexity and performance. For the 2 dimensional three base station network
described in Sec. 2.1, the form of the optimal static association policy is difficult to characterize. We compute the
‘optimal’ static association policy within a family of policies that can be easily parametrized.

Weighted signal strengths The first family of policies we consider is parametrized by base station weights. Each
base station is assigned a weight and a user is associated with the base station that offers the maximum weighted
received signal strength. The weight associated with one of the base stations is set to 1, and a simple gradient
descent is used to determine weights for the remaining base stations. The bounding methodology described in
Sec. 5.2 is used to approximate the mean delay at each step of the gradient descent algorithm.

Pairwise optimization As an alternative to the methodology proposed above, we consider a family of policies
where modifying a single parameter while keeping the rest constant allows the load division between two base
stations to be modified without affecting the set of users served by the other base station. Note that the policy
presented in Sec. 6.3 does not possess this property as changing the weight associated with any base station po-
tentially changes the load served by all three base stations. This property allows the sequential optimization of the
policy parameters, and the optimal policy can be determined using a sequence of iterations where one parameter is
adjusted in each iteration.

The vector of received signal strengths from the three base stations, ~s(x) = (s1(x),s2(x),s3(x)), is projected
down on to the two dimensional hyperplane that passes through the origin and is orthogonal to the vector (1,1,1).
The family of static policies that we consider divide this hyperplane into regions, and a base station serves all users
whose projected signal strength vector falls in its region. The hyperplane is chosen such that users with identical
relative received signal strengths from the base stations are mapped to the same point. The projected vector, after
an orthogonal transformation is given by~z = {z1,z2}, where

z1 =
1√
6
(2s1(x)− s2(x)− s3(x)) and z2 =

1√
2
(s2(x)− s3(x)).

The hyperplane is divided into three regions by three rays extending from the origin, as shown in Fig. 5a. Each
base station serves the region between two rays as illustrated in the figure. The rays are specified by the angles
α,β, and γ that they subtend with the z1 axis, and these angles parametrize a policy within the family. Rotating one
of the rays only exchanges load between the two base stations whose service regions adjoin the ray. The optimal
static policy is determined through a series of iterations. At each iteration, one of the parameters is modified, and
a new value that improves the overall delay experienced by the set of users served by the three base stations is
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Fig. 5. Three base station network

chosen. Thus, each iteration lowers the overall mean delay experienced by users in the system, ensuring that the
optimization procedure converges.

Fig. 5b exhibits the mean delay performance in a three base station network. The repacking policy for this
case is a hard combinatorial problem to be solved upon each arrival/departure and so was infeasible. The static
load balancing and the greedy user policies exhibit similar performance, i.e., overlap, while the optimized static
(asymmetric) policy exhibits substantial performance gains. Even the greedy system policy (itself unrealistic in
practice) achieves mean delays up to 20 times higher than the weighted signal strength based policy. The projection
based policy performs significantly better than even the weighted signal strength policy, reducing the user perceived
mean delay further by 6-10 times at high loads.

6.4 Heterogeneous Spatial Traffic Loads

Thus far, all the simulation results exhibited performance under spatially homogeneous user (load) distributions.
In this section, we additionally consider various spatially non-homogeneous load profiles for the two base station
scenario, as shown in Fig. 6a-6d. The line segment joining the two base stations is split into four quarters, and
the load distribution is varied by varying the proportion of users in each quarter. Users in a particular quarter
are uniformly distributed within that quarter. Load profiles 2 and 4 are symmetric with respect to the midpoint
between the base stations. The users are concentrated near the base stations in profile 2, and the impact of inter-cell
interference is diminished. The effective load on the network under this profile is lighter at a fixed user arrival rate
compared to profile 4, where users are concentrated close to the midpoint and are strongly impacted by inter-cell
interference. The load distribution under profiles 3 and 5 is asymmetric.

The optimized static policy performs consistently well under all spatial load profiles, and performs as well as
or outperforms all the dynamic policies. This demonstrates its robustness to spatially heterogeneous traffic loads.
Under load profile 3, for example, the optimized static policy outperforms all the other schemes by a wide margin.
None of the other schemes perform well under all profiles, while our proposed scheme is able to infer the nature
of the spatial load and adapt to it. The relative performance of the dynamic schemes can vary dramatically with
the distribution of the spatial load. The greedy system scheme performs well under profiles 1 and 4. However, it is
the worst among the schemes under load profile 2. Since the greedy system scheme tries to maximize the average
throughput realized by all users in the system, it might deviate from a load balancing policy so as to ensure that a
base station stays idle. However, since users cannot be reassigned, such decisions adversely affect long-term delay
performance. The static max rate scheme performs well under load profile 2, where the effect of interference is
minimal and under profile 4, where the spatial load is inherently asymmetric. It performs very poorly under the
other spatial profiles.

6.5 Performance Sensitivity

Channel model: We use parameters that model cellular base stations in an urban environment. We simulate a
system consisting of two base stations 2800 meters apart, and compare the performance of the schemes presented
earlier using a path loss exponent 3.5, and a cell-edge signal to noise ratio of 10 dB. The data rate at which users
are served is calculated using Shannon’s capacity formula, after a 6dB backoff is applied to the perceived SINR.
Fig. 7a demonstrates that the optimized static policy significantly outperforms the dynamic schemes. The mean
delay under the greedy system scheme, for example, is over 50 times the mean delay under the optimized static
scheme at high loads. These results demonstrate that the performance trends observed earlier do not depend on the
particular channel model used and are a consequence of the dynamics introduced by inter-cell interference.
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Fig. 6. Delay performance under spatially heterogeneous traffic
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Long tailed file size distributions: In the process of determining the optimized static threshold, we still assume
that file sizes are exponentially distributed. We assume that the users’ file size requirements are log normally
distributed with mean 5 MB, and variance 12.276×106. The performance of the various schemes under a spatially
homogeneous user distribution is shown in Fig. 7b. The relative performance of the different schemes is very
similar to the case of exponential file sizes. The optimized static policy again results in the best performance, and
appears to be robust to variations in the distribution of users’ file size requirements.

7 Conclusion

We considered a user-base station association problem in wireless networks serving dynamic loads and thus cou-
pled through interference and proposed a methodology to bound and optimize performance of such systems. For
the one and two dimensional models considered, the performance gain from optimized static policies is substan-
tial, even outperforming natural greedy user and system dynamic policies. The load-balancing static policy was
shown to be very poor, showing that the critical aspect is inducing asymmetry in the load, even when the network
and loads are symmetric. Our simulation results demonstrated that our proposed policy performs consistently well
under all spatial loads and is robust to variations in file size distributions and channel parameters. The performance
of the conventional dynamic policies was found to vary dramatically with the load distribution, and no one policy
performed consistently well. This work suggests the possibility that substantial gains might be achieved if network
functions (see e.g., Sec. 1) coupled through interference (or otherwise) are optimized for dynamic loads.
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Appendix

The following definitions provide a characterization of the stochastic ordering relationship between two process,
and will be used in the proof of Lemma 1.



Definition 1 ([32]). Let l, m∈Rn, and let l[1] ≥ ·· · ≥ l[n] denote the components of l arranged in descending order.

l≺w m if
k

∑
i=1

l[i] ≤
k

∑
i=1

m[i], k = 1, . . . ,n

The vector l is then said to be weakly majorized by m.

Definition 2 ([33]). Let L, M be random vectors taking values in Rn. L is stochastically weak-majorized by M,
written L ≺st

w M, if there exist random vectors L̃ and M̃ taking values in Rn with the same probability laws as L
and M respectively, with L̃≺w M̃ a.s.

Proof of Lemma 1: We will demonstrate that the policy πb, which is obtained from πa by exchanging service
regions R1 and R2 between the base stations, obtains a lower (or equal) mean delay, see Section 3. This is shown
by constructing a pair of coupled processes Ũπa(t) and Ũπb(t), such that

Ũπb
1 (t)⊆ Ũπa

1 (t) and Ũπb
2 (t)⊆ Ũπa

2 (t), (12)

and such that Ũπa(t) ∼ Uπa(t) and Ũπb(t) ∼ Uπb(t). It follows that associated queue length processes Q̃πa(t) and
Q̃πb(t) satisfy similar properties with containment replaced with an inequality. By standard arguments, see [33],
this construction suffices to show that Qπb(t) is stochastically weak-majorized by Qπa(t). As t → ∞ this implies
πb achieves a lower (or equal) mean queue length, and thus, by Little’s Law, a lower (or equal) mean delay.

Note that the arrival rates associated with the exchanged service regions are equal so the arrival rate to each
base station under the two policies are the same, i.e., λ1 = λ(X πa

1 ) = λ(X πb
1 ) and λ2 = λ(X πa

2 ) = λ(X πb
2 ). We couple

arrivals of the two processes Ũπa(t) and Ũπb(t), as generated by a common Poisson process with intensity λ1 +λ2.
For convenience, we index user requests based on arrival times (including those in the system at t = 0), i.e., 1,2, . . .
While arrival times for users to the two systems are identical, their locations may not be, whence we let xπa

i and
xπb

i denote the locations of the ith request under policy πa and πb respectively.
Suppose x ∈ Ũπa

1 (t) then let cπa
x (t) be the capacity to the user under policy πa at time t taking into account

the state of the neighboring base station. Since users share capacity via processor sharing, effective service rate to

users at locations x and y under the two policies is given by µπa(t,x) = cπa
x (t)

Qπa
βπa (x)(t)

. and µπb(t,y) = c
πb
y (t)

Q
πb
β

πb (y)
(t)

. So the

departure rate of users from BS1 under policy πa is given by

µπa
1 (t) = ∑

x∈Ũπa
1 (t)

µπa(t,x).

We define the overall departure rates µπa
2 (t), µπb

1 (t), and µπb
2 (t) analogously.

Let Ũπa(0) = Ũπb(0) so (12) holds at time t = 0. Our construction will be such that if (12) holds at some time
t then it is satisfied after the next arrival/departure, while maintaining marginal dynamics that are consistent with
systems associated with policies πa and πb. Although the two systems see the same overall arrival rates they may
see different overall departure rates. In our construction we let

ν(t) = λ1 +λ2 +max(µπa
1 (t), µπb

1 (t))+max(µπa
2 (t), µπb

2 (t))

denote the current rate of events for the coupled processes and allow fictitious events to ensure the marginal system
processes have the correct dynamics. Let the time at which the next event occurs be t ′ and z be a realization of
a random variable Z, which is uniformly distributed on [0,ν(t)]. The coupled process events are constructed as
follows:

μ  (t,x )πaπ  :a

π  :b
πbμ  (t,x )

λ1 λ2

λ2

μ  (t,x )πa μ  (t,x )πa

πbμ  (t,x )πbμ  (t,x ) πbμ  (t,x )πbμ  (t,x )λ1

ν(t)0

arrivals     departures BS1                     departures BS2

Z=z

1

1

2

2

33 4

4 ficticious

fic.

(coupled BS1 departures for User 1)

Fig. 8. Example coupling construction for arrivals/deparartures based on realization of Z.

Arrivals: If 0 ≤ z ≤ λ1, the next event is an arrival, say of user n , to BS1 under both policies. We let random
variables Xπa

n and Xπb
n denote the position of this user under policies πa and πb respectively. The distribution Xπa

n



is given by P(Xπa
n ∈ A) = λ(A)

λ1
, for a measurable set A⊆ X πa . The position of the user under policy πb is identical,

except if Xπa
n ∈R1. In this case, the user’s location falls within R2 with a distribution P(Xπb

n ∈ B|Xπa
n ∈R1) = λ(B)

λ(R2) ,
where B⊆ R2. The states of the processes are updated accordingly. If λ1 ≤ z≤ λ1 +λ2, the next event is an arrival
to BS2 under both policies, with the user’s location generated analogously to the above. In either case, arrivals to
BS1 or BS2 occurs simultaneously for both policies, so (12) holds at time t ′. Also under the above construction the
spatial distribution of Poisson arrivals is maintained.
Departures: If λ1 +λ2 ≤ z≤ λ1 +λ2 +max(µπa

1 (t), µπb
1 (t)), the event is a potential departure from BS1. Consider

any user k such that xπb
k ∈ Ũπb

1 (t). Since (12) holds, user k is also in the system under policy πa, i.e., xπa
k ∈ Ũπa

1 (t).
Since (12) holds there are only three cases to consider:
1. Ũπb

2 (t) = Ũπa
2 (t) = /0: BS2 is idle under both policies. If xπa

k = xπb
k , cπb

x
πb
k

(t) = cπa
xπa

k
(t). Otherwise, xπa

k ∈ R1 and

xπb
k ∈ R2, so Fact 1 implies cπb

x
πb
k

(t)≥ cπa
xπa

k
(t).

2. Ũπb
2 (t) 6= /0,Ũπa

2 (t) 6= /0: BS2 is transmitting under both policies, and, as in the previous case, we can argue that
cπb

x
πb
k

(t)≥ cπa
xπa

k
(t).

3. Ũπb
2 (t) = /0,Ũπa

2 (t) 6= /0: In this case, users in BS1 see no interference under policy πb while they see interference
from BS2 under policy πa. Combining our conclusion in case 1 with the fact that the data rate at which users can be
served is an increasing function of the received signal to interference plus noise ratio, we see that cπb

x
πb
k

(t)≥ cπa
xπa

k
(t).

Also, by assumption Q̃πb
1 (t)≤ Q̃πa

1 (t), thus µπb(t,xπb
k )≥ µπa(t,xπa

k ). This permits us to couple User k’s departure
such that if it leaves under policy πa, it also leaves under policy πb. To see this, consider Fig. 8 where [0,ν(t)] has
been subdivided based on the arrival rates and service rates of the users in the system under the two policies. If
a user is present in both systems then a set of length µπa(t,xπa

k ) for policy πa is contained within one of length
µπb(t,xπb

k ) for policy πb. If the user has already left the system under policy πa, the corresponding set for policy
πb can be arranged arbitrarily (need not be contiguous) within [0,ν(t)]. Unused intervals correspond to dummy
events. Which departures (if any) occur for the two systems depend on which sets contain z. However, clearly a
departure of User k from BS1 under policy πa results in the same under policy πb unless it has already left the
system, and (12) still hold at time t ′. If (λ1 +λ2 +max(µπa

1 (t), µπb
1 (t)))≤ z, the event is a potential departure from

BS2, and is treated analogously to departures from BS1.
Since relationship (12) holds after any future event, by induction the relationship holds for all times in the

future. We show that the following relationship hold at any given time

1. Q̃P
1 (t)≥ Q̃PE

1 (t) and Q̃P
2 (t)≥ Q̃PE

2 (t)
2. Corresponding to every user attached to BS1 under policy PE , there exists a user attached to BS1 under policy

P, that is served at lower rates both when BS2 is idle and active.
3. Corresponding to every user attached to BS2 under policy PE , there exists a user attached to BS2 under policy

P, that is served at lower rates both when BS1 is idle and active.

Now, consider a sequence of user arrivals and departures resulting from a static load allocation policy that
associates users in region r1 with base station 1, and users in region r2 with base station 2. We construct an
alternate sample path based on this sequence of user arrivals. User arrivals in region r1 are moved to instead arrive
in region r2 while still being served by base station 1, and user arrivals in region r2 are moved to r1 and served by
base station 2. All other user arrivals are unchanged. Since the probability of user arrivals in region r1 is equal to
the probability of user arrivals in r2, and there are no correlations between user arrivals, the constructed sequence
of user arrivals is also representative of the arrival process.

The user queues associated with the two base stations evolve identically until a user arrives in either region r1
or r2. As proved previously, this user is served at a higher rate in the alternate sample path. All other users currently
in the queues are served at exactly the same rates as in the original sample path as the queue lengths of the two
queues are identical. As a result the user that arrived to one of the regions r1 or r2 is served and leaves the system
earlier in the alternate sample path. This results in all the other remaining users in the system being served at the
same or greater rate. Thus, all users in the alternate sample path perceive delays that are less than or equal to those
in the original sample path.

Since both systems are ergodic, the sample mean of the user delays in both sample paths converge eventually
to the expected values, and the expected user delay in the alternate sample path has to be lower or equal to that in
the original. Note that this alternate sample path corresponds to a policy which associates users in region r2 with
base station 1, and users in r1 to base station 2.


